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Abstract. We describe an experimlmt designed to evaluate the use
of the "Cortex Transform" (Watson, 1987) as an image prepn:gesscr for

Sparse Distributed Memory. In the experiment, a set of images were
injected with Gattssian noise, preprocessed with the Cortex Transform, and
then encoded into bit patterns. The various spatial frequency bands of the
Cortex Transform were encoded separately so that they could be evaluated
based on their ability to properly clusterpatternsbelonging to the same
class. The results of this study indicate that by simply encoding the low-
pass band of the Cortex Transform, a very suitable input representation for
the SDM can be achieved.

Sparse Distributed Memory (SDM), an associative memory described by Kanerva

(1988), is well-suited to perform high-level object recognition tasks because of its ability to

quickly classify patterns on the basis of incomplete or corrupted information. This ability

would be especially useful for visual recognition tasks, where typically an object in a scene

must be quickly identified despite the presence of noise and distortions in the imaging

process, or variations in the shape of the object. However, before SDM can be applied to

visual object recognition problems, it is necessary to determine how raw images should be

preproeessed and encoded in order to form a suitable input for the SDM.

To determine how raw images should be processed, it is first necessary to consider

what types of variations in the image may interfere with the proper classification of an

object. In this case, since we are interested in applying SDM to the problem of recognizing

2D shapes, we need to be concerned with such image variations as pixel noise, changes in

contrast, line thickness, or even slight variations in the shape's structure (e.g., hand-drawn

characters). At this stage, however, we concern Ourselves with the case of pixel noise only

(i.e., an independent and identically distributed Gaussian process added to each image pixel

value).

Because the SDM uses the Hamming distance between two bit-patterns as a

measure of their "closeness," our goal in preproeessing and encoding the image is to

develop a bit-string representation of the image such that two shapes belonging to the same

class give rise to bit-strings that are close in Hanm_g distance. Conversely, shapes

belonging to different classes should give rise to bit-strings that are well-separated in

Hamming distance. In this paper, we examine how well the Cortex Transform (Watson,



1987), serving as the preprocessor, accomplishes this goal for images that have been

perturbed with pixel noise only.

The Cortex Transform

The Cortex Transform is described in detail by Watson (1987, 1988). Here we

discuss only the important features that were used in the experiment.

The Cortex Transform subdivides the content of an image into different spatial-

frequency bands by filtering the image with a set of oriented, bandpass filters as shown in

Figure 1. This process converts a singie image into multiple images, each of which contains

a unique subset of the spatial frequencies present in the original image. When properly sub-

sampled, these images can provide a very compact representation of the original image

because their pixels have very tittle correlation with one another. This property is not only

highly desirable for image compression, but would also be useful in preprocessing images for

SDM. This is because in the encoding process, we wish to maximize the information content

of each pixel being encoded. If the pixels are uncorrelated to one another, then each pixel is

"saying" the most it can about the content of the image.

In general, the Cortex Transform produces enough output images to give a complete

represention of all the different spatial frequency bands in an image, such as depicted in

Figure 1. For our purposes though, we chose to use only a portion of the bands. These are

two different band-pass filters subdivided into four orientations each, and two different low-

pass filters, as shown in Figure 2. Note that each set of bandpass filters results in a set of

four images - one image for each orientation - while each of the low-pass filters results in

only one image. All the filtered images were sub-sampled so as to reduce the number of

pixels with only a negligible loss of information (see Watson, 1988).

While the output images of the Cortex Transform contain both the magnitude and

phase of spatial frequency components, we considered only the magnitude to be important

Our reason for this is that we were not interested in the exact location of spatial frequency

components (which the phase would provide), but more
|

importantly, the extent to which they are present in the

image and their approximate location.

Encoding the Cortex Transform

The magnitudes of the filtered images were

encoded into bit-strings by first quantizing the pixel

values of an image into five levels each and then using a

4-bit thermometer-type code, as shown in Table 1, to

encode each pixel. The quantization levels for an image

were determined by finding the minimum and maximum

pixel values in the image, and then setting the

quantization thresholds at uniform intervals over the

range from minimum to maximum. A set of four images

(corresponding to four orientations) was similarly

quantized, except that the minimum and maximum pixel

pixel
value

0

1

2

3

4

bit-string

0000

0001

0011

0111

1111

Table 1: Encoding quantized

pixel values into bit.strings.
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valueswere computedover the set of all four images,and the ensemble was quantized as a

whole.

A bit-string representation of the image was then formed by simply concatenating the

4-bit codes for each pixel into one long bit-string. Thus, an NxN low-pass filtered image

would result in a bit-string of length NxNx4, and four (oriented) NxN band-pass filtered

images would result in a single bit-suing of length NxNxl6.

Experiments

The set of shapes used in this experiment were the 26 capital letters of the alphabet,

extracted from the Courier 24-point font on a SUN 3/60 workstation, as shown in Figure 3.

Each image contained only two pixel values: 0 for off (white) and 255 for on (black). These

images were then injected with noise by adding an i.i.d. Gaussian process to the pixel

values. (Note: since the output of the noise injection process was a floating point image, no

special action needed to be taken for pixel values lying outside the interval [0, 255].) This

was done using standard deviations (o) of 40, 80, and 120. For each standard deviation, 20

samples of noise were generated. Thus, each letter had a total of 60 different noisy

instances (3 values of o x 20 instances/o). These images, in addition to the 26 original

(non-noisy) images, were then processed with the Cortex Transform under the four filter

arrangements shown in Figure 2. The filtered images were then sub-sampled and encoded

4-bits/pixel as described above. Since the original images were padded in a 32x32 square,

only the central regions of each sub-sampled, filtered image needed to be encoded, as

shown in Figure 4.

This entire process is illustrated in Figure 5.

Once the images were encoded, the resulting bit-patterns were compared by

Hamming distance to determine how well patterns of the same class were clustered

together. This was done as follows:

Assuming we have chosen a particular standard deviation of noise, o, and a particular

filtering strategy (one of the four shown in Fig. 2), then we denote the jth noisy instance of

pattern i as,

P ij [i=1...26, j=1..20],

and we denote the original (non-noisy) instance of pattern i as,

Pi* [i=1...26],

(P is a bit-pattern obtained by encoding a preprocessed image).

Then, we denote the Hamming distance between an original (non-noisy) instance of

pattern class k and the j_ noisy instance of pattern class i as,

dti j = I P k* "Pij ILl

where I • ILl denotes the L1 norm (Hamming distance for bit-strings). These
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distances were computed for all Lid. The distances were then accumulated into two

different histograms for each k: one histogram for comparisons between Pk* and instances

within class k (which we denote Hin k), and another for comparisons between Pk* and
w

instances from classes other than k (which we denote Hno t in k)" Formally, this can be

expressed as,

Hi,,k(d) = Xd_:i, (sumoveri_,j=l...20),

and

Haot_ia_t(cO = Y. dla_i, (sum over all i¢-k,j=l...20).

Then, by integrating each histogram up to some distance, D, we obtain a measure of
the signal-to-noise ratio that would result when reading the SDM with Hamming radius D.
That is,

Sin k(D)= _,Hin k(d), (sumoverd=0...D),

and,

Shot in k(D) = y_Hnot in k(d), (sum over d=O...D).

If $/n/c(D) is less than 5no t in/_(D), this would indicate that there are more instances

of class k than of any other class within D. In terms of reading from the SDM, then, this

would mean that there is at least a possibility of recovering the correct data when reading
the memory with Pk* as the address and using Hamming radius D. Otherwise, the data

corresponding to P/_* would most certainly be overwhelmed by data from other classes.

Thus, we use the function

pk(D) =
Z,if S_ k(O)<S_ot i, k(o)

0, otherwise,

to denote whether class k "passes" (1) or "fails" (0) at Hamming distance D. Then,

in order to get a global measure of performance at Hamming distance D, we average plc(D)

over all classes:

Perf(D) - 1/26 Z pk(D), (sum over k=0...26).

This function provides us with a reasonable measure by
representation formed by each of the filter processes.

which to judge the
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Results

The function Perf(D) is plotted in Figures 6-11 for the different standard deviations of

noise (0---40, 80, 120) and filtering strategies tested. Figures 6-8 plot the performance of the

low-pass filters, and Figures 9-11 plot the performance of the oriented, band-pass filters

along with the performance of the raw image (i.e., no preprocessing)

For nearly all cases, the lowest-pass filter (i.e., the filter with the lowest cutoff
frequency) provided the best performance, yielding 96% "passes" at D=5 bits (Fig. 6). This

filter has a cutoff of 0-0.125 cycles/pixel and compresses the original 17x15 pixels to 5x4,
yielding a 12-fold decrease in the number of pixels (and hence the number of bits in the SDM

input bit-string).

Note that with a high standard-deviation of noise (o=120), the lowest-pass band no
longer provides the best performance (Fig. 8). The best performance is provided instead by
the next lowest band (0-0.25 cycles/pixel). Also at this noise level, the performance of the

highest-pass band filter (0.25-0.5 cycles/pixel) is worse than that of the raw image with no
preprocessing (fig. 11). However, in all other cases, preprocessing yields an improvement
in the image representation.

Conclusion

Our goal in this experiment was to evaluate the Cortex Transform as a preprocessor
for Sparse Distributed Memory. The results indicate that for 2-D shapes for which the

image has been perturbed with pixel noise only, a dramatic improvement in the image
representation may be obtained by encoding the low spatial-frequency bands of the Cortex
Transform.

It should be noted that this experiment was intended as an initial study to evaluate
the use of multi-resolution or oriented filters with SDM. There are many further extensions
to this work. One would be to compute the performance of the various filters for other image
variations, such as line-thickness, contrast, or small structural variations. Another

possibility would be to examine other encoding strategies, such as the use of real numbers
instead of bits. In this case, it may also be useful to investigate the effect of using an L2
distance metric instead of L1.

An important advantage of conducting tests such as described here is that it is

possible to evaluate a representation by itself without getting involved with the

implementation details of SDM. This allows one to focus on the special problems of the

application domain - such as in this case, the variations that can take place in an image -
before employing more powerful, higher-level machinery.
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Figure 3: The set of shapes used in the experiment. These character shapes were ex-
tracted from the Courier 24-point font on a SUN 3160 workstation. Each font is 15x17, but padded
by zeros into a 327,32 image so as to avoid "wrap-amend" effects with the Cortex Transform.

Original imaee Sub-samvlcd. filtered imaees

15

32

bandpass-I

and lowpass-1

subsampled 2:1 16

bandpass-2 _ 4x5and lowpass-2

subsampled 4:1 8

Figure 4: Extracting the central regions from the sub-sampled, filtered im.

ages. Since the original shape is 15x17 but padded into a 32x32 square, the only pixels in
the output that need to be encoded are those that correspond to the central 15x17 region of the
original image. These pixels are shown (shaded areas) for the sub-sampled, faltered images.
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